Even though physical implementations of quantum computers make considerable progress, it is not likely that you will have one of them under your desk in the next couple of years. Fortunately, some firms like IBM and Rigetti have decided to make some of their quantum devices available only so that you can play with them. … Continue reading Into the quantum lab – first steps with IBMs Q experience

# Category: Mathematics

# Shor’s quantum factoring algorithm

Until the nineties of the last century, quantum computing seemed to be an interesting theoretical possibility, but it was far from clear whether it could be useful to tackle computationally hard problems with high relevance for actual complications. This changed dramatically in 1994, when the mathematician P. Shor announced a quantum algorithm that could efficiently … Continue reading Shor’s quantum factoring algorithm

# Grover’s algorithm – unstructured search with a quantum computer

In the last post, we have looked at the Deutsch-Jozsa algorithm that is considered to be the first example of a quantum algorithm that is structurally more efficient than any classical algorithm can probably be. However, the problem solved by the algorithm is rather special. This does, of course, raise the question whether a similar … Continue reading Grover’s algorithm – unstructured search with a quantum computer

# Qubits and Hilbert spaces

When you use your favorite search engine to search for information on quantum computing, the first term that will most likely jump at you is the qubit. In this post, I will try to explain what this is and how it is related to the usual framework of quantum mechanics. Please be aware that this … Continue reading Qubits and Hilbert spaces

# The EM algorithm and Gaussian mixture models – part II

In this post, I will discuss the general form of the EM algorithm to obtain a maximum likelihood estimator for a model with latent variables. First, let us describe our model. We suppose that we are given some joint distribution of a random variable X (the observed variables) and and random variable Z (the latent … Continue reading The EM algorithm and Gaussian mixture models – part II

# The EM algorithm and Gaussian mixture models – part I

In the last few posts on machine learning, we have looked in detail at restricted Boltzmann machines. RBMs are a prime example for unsupervised learning - they learn a given distribution and are able to extract features from a data set, without the need to label the data upfront. However, there are of course many … Continue reading The EM algorithm and Gaussian mixture models – part I

# Why you need statistics to understand neuronal networks

When I tried to learn about neuronal networks first, I did what probably most of us would do - I started to look for tutorials, blogs etc. on the web and was surprised by the vast amount of resources that I found. Almost every blog or webpage about neuronal networks has a section on training … Continue reading Why you need statistics to understand neuronal networks