Quantum states are in many ways different from information stored in classical systems - quantum states cannot be cloned and quantum information cannot be erased. However, it turns out that quantum information can be transmitted and replicated by combining a quantum channel and a classical channel - a process known as quantum teleportation. Bell states … Continue reading Quantum teleportation
Category: Qiskit
Factoring integers on a quantum computer with Qiskit
After all the work done in the previous posts, we are now ready to actually implement Shor's factoring algorithm on a real quantum computer, using once more IBMs Q Experience and the Qiskit framework. First, recall that Shor's algorithm is designed to factor an integer M, with the restriction that M is supposed to be … Continue reading Factoring integers on a quantum computer with Qiskit
Implementing the quantum Fourier transform with Qiskit
The quantum Fourier transform is a key building block of many quantum algorithms, from Shor's factoring algorithm over matrix inversion to quantum phase estimation and simulations. Time to see how this can be implemented with Qiskit. Recall that the quantum Fourier transform (or, depending on conventions, its inverse) is given by $latex |x \rangle \mapsto … Continue reading Implementing the quantum Fourier transform with Qiskit
Running the Deutsch-Jozsa algorithm on IBMs Q experience
In one of the previous posts, we have looked at the basics of the Qiskit package that allows us to create and run quantum algorithms in Python. In this post, we will apply this to model and execute a real quantum algorithm - the Deutsch-Jozsa algorithm. Recall that the Deutsch-Jozsa algorithm is designed to solve … Continue reading Running the Deutsch-Jozsa algorithm on IBMs Q experience