Using Python to access IBMs quantum computers

In a previous post, we have looked at IBMs Q experience and the graphical composer that you can use to build simple circuits and run them on the IBM hardware. Alternatively, the quantum hardware can be addressed using an API and a Python library called Qiskit which we investigate in this post. Installation and setup … Continue reading Using Python to access IBMs quantum computers

Accessing your hard drive – the OS developers moment of truth

When building your own operating system, the moment when you first write data to a real physical hard disk of a real PC is nothing less than thrilling - after all, making a mistake at this point could mean that you happily overwrite data on your hard drive randomly and wipe out important data on … Continue reading Accessing your hard drive – the OS developers moment of truth

Quantum simulation

In his famous lecture Simulating Physics with computers, Nobel laureate Richard Feynman argued that non-trivial quantum systems cannot efficiently be simulated on a classical computer, but on a quantum computer - a claim which is widely considered to be one of the cornerstones in the development of quantum computing. Time to ask whether a universal … Continue reading Quantum simulation

The protected mode in the x86 architecture

Modern operating systems would not be possible without the ability of a CPU to execute code at different privilege levels. This feature became available for mainstream PCs in the early eighties, when Intel introduced its 80286 and 80386 CPUs, and was readily employed by operating systems like Windows 3.11 and, of course, Linux, which Linus … Continue reading The protected mode in the x86 architecture

Navigating downhill: the quantum variational eigensolver

In quantum mechanics, the dynamics of a system is determined by its Hamiltonian, which is a hermitian operator acting on the Hilbert space that describes the system at hand. The eigenstates and eigenvalues of the Hamiltonian then correspond to stationary states and their energies, and finding these eigenstates and the corresponding eigenvalues is the central … Continue reading Navigating downhill: the quantum variational eigensolver

Into the quantum lab – first steps with IBMs Q experience

Even though physical implementations of quantum computers make considerable progress, it is not likely that you will have one of them under your desk in the next couple of years. Fortunately, some firms like IBM and Rigetti have decided to make some of their quantum devices available only so that you can play with them. … Continue reading Into the quantum lab – first steps with IBMs Q experience