# First steps with Paperspace Gradient So far, I have exclusively been using AWS EC2 when I needed access to a GPU - not because I have carefully compared the available offerings and taken a deliberate decision, but simply because I already had an EC2 account and know the platform. However, I though it would be interesting to try out other … Continue reading First steps with Paperspace Gradient

# The EM algorithm and Gaussian mixture models – part II In this post, I will discuss the general form of the EM algorithm to obtain a maximum likelihood estimator for a model with latent variables. First, let us describe our model. We suppose that we are given some joint distribution of a random variable X (the observed variables) and and random variable Z (the latent … Continue reading The EM algorithm and Gaussian mixture models – part II

# The EM algorithm and Gaussian mixture models – part I In the last few posts on machine learning, we have looked in detail at restricted Boltzmann machines. RBMs are a prime example for unsupervised learning - they learn a given distribution and are able to extract features from a data set, without the need to label the data upfront. However, there are of course many … Continue reading The EM algorithm and Gaussian mixture models – part I

# Why you need statistics to understand neuronal networks When I tried to learn about neuronal networks first, I did what probably most of us would do - I started to look for tutorials, blogs etc. on the web and was surprised by the vast amount of resources that I found. Almost every blog or webpage about neuronal networks has a section on training … Continue reading Why you need statistics to understand neuronal networks

# Finite Markov chains In this post, we will look in more detail into an important class of Markov chains - Markov chains on finite state spaces. Many of the subtleties that are present when studying Markov chains in general state spaces do not appear in the finite case, while most of the key ideas and features of Markov … Continue reading Finite Markov chains

# Monte Carlo methods and Markov chains – an introduction In our short series on machine learning, we have already applied sampling methods several times. We have used and implemented Gibbs sampling, and so far we have simply accepted that the approach works. Time to look at this in a bit more detail in order to understand why it works and what the limitations of … Continue reading Monte Carlo methods and Markov chains – an introduction

# Training restricted Boltzmann machines with persistent contrastive divergence In the last post, we have looked at the contrastive divergence algorithm to train a restricted Boltzmann machine. Even though this algorithm continues to be very popular, it is by far not the only available algorithm. In this post, we will look at a different algorithm known as persistent contrastive divergence and apply it to … Continue reading Training restricted Boltzmann machines with persistent contrastive divergence

# Learning algorithms for restricted Boltzmann machines – contrastive divergence In the previous post on RBMs, we have derived the following gradient descent update rule for the weights. $latex \Delta W_{ij} = \beta \left[ \langle v_i \sigma(\beta a_j) \rangle_{\mathcal D} - \langle v_i \sigma(\beta a_j) \rangle_{P(v)} \right] &s=1$ In this post, we will see how this update rule can be efficiently implemented. The first thing … Continue reading Learning algorithms for restricted Boltzmann machines – contrastive divergence

# Restricted Boltzmann machines In the previous post, we have seen that a Boltzmann machine as studied so far suffers from two deficiencies. First, training is very slow as we have to run a Gibbs sampler until convergence for every iteration of the gradient descent algorithm. Second, we can only see the second moments of the data distribution and … Continue reading Restricted Boltzmann machines

# Turn on the heating – from Hopfield networks to Boltzmann machines In my recent post on Hopfield networks, we have seen that these networks suffer from the problem of spurious minima and that the deterministic nature of the dynamics of the network makes it difficult to escape from a local minimum. A possible approach to avoid this issue is to randomize the update rule. Intuitively, we want to … Continue reading Turn on the heating – from Hopfield networks to Boltzmann machines