Quantum error correction: an introduction to toric codes

While playing with the IBM Q experience in some of my recent posts, we have seen that real qubits are subject to geometric restrictions - two-qubit gates cannot involve arbitrary qubits, but only qubits that are in some sense neighbors. This suggests that efficient error correction codes need to tie to the geometry of the … Continue reading Quantum error correction: an introduction to toric codes

Quantum error correction with stabilizer codes

In our previous discussion of quantum error correction, we have assumed that quantum gates can act on any two physical qubits. In reality, however, this is not true - only nearby qubits and interact, and our error correction needs to take the geometric arrangements of the qubits into account. The link between these geometric constraints … Continue reading Quantum error correction with stabilizer codes

Basics of quantum error correction

Do usable universal quantum computers exist today? If you follow the recent press releases, you might believe that the answer is "yes", with IBM announcing a 50 qubit quantum computer and Google promoting its Bristlecone architecture with up to 72 qubits. Unfortunately, the world is more complicated than this - time to demystify the hype … Continue reading Basics of quantum error correction