Quantum error correction with stabilizer codes

In our previous discussion of quantum error correction, we have assumed that quantum gates can act on any two physical qubits. In reality, however, this is not true - only nearby qubits and interact, and our error correction needs to take the geometric arrangements of the qubits into account. The link between these geometric constraints … Continue reading Quantum error correction with stabilizer codes

Fault tolerant quantum computing

In the previous post, we have looked at the basic ideas behind quantum error correction, namely the encoding of logical states so that we are able to detect and correct errors like bit flip and phase flip errors. Unfortunately, this is not yet good enough to implement quantum computing in a fault-tolerant way. What is … Continue reading Fault tolerant quantum computing

Basics of quantum error correction

Do usable universal quantum computers exist today? If you follow the recent press releases, you might believe that the answer is "yes", with IBM announcing a 50 qubit quantum computer and Google promoting its Bristlecone architecture with up to 72 qubits. Unfortunately, the world is more complicated than this - time to demystify the hype … Continue reading Basics of quantum error correction